96 research outputs found

    Elastic and cost-effective data carrier architecture for smart contract in blockchain

    Full text link
    [EN] Smart contract, which could help developer deploy decentralized and secure blockchain application, is one of the most promising technologies for modern Internet of things (IoT) ecosystem today. However, Ethereum smart contract lacks of ability to communicate with outside IoT environment. To enable smart contracts to fetch off-chain data, this paper proposes a data carrier architecture that is cost-effective and elastic for blockchain-enabled IoT environment. Three components, namely Mission Manager, Task Publisher and Worker, are presented in the data carrier architecture to interact with contract developer, smart contract, Ethereum node and off-chain data sources. Selective solutions are also proposed for filtering smart contract event and decoding event log to fit different requirements. The evaluation results and discussions show the proposed system will decrease about 20USD deployment cost in average for every smart contract, and it is more efficient and elastic compared with Oraclize Oracle data carrier service.This work was supported by the fund of National Natural Science Foundation of China (Grants No. 61702102), Natural Science Foundation of Fujian Province, China (Grant No. 2018J05100), Foundation for Distinguished Young Scholars of Fujian Agriculture and Forestry University (Grant No. xjq201809), and in part by the MOST of Taiwan (Grant No. 107-2623-E-009-006-D).Liu, X.; Muhammad, K.; Lloret, J.; Chen, Y.; Yuan, S. (2019). Elastic and cost-effective data carrier architecture for smart contract in blockchain. Future Generation Computer Systems. 100:590-599. https://doi.org/10.1016/j.future.2019.05.04259059910

    Cloud Resource Management With Turnaround Time Driven Auto-Scaling

    Get PDF
    Cloud resource management research and techniques have received relevant attention in the last years. In particular, recently numerous studies have focused on determining the relationship between server-side system information and performance experience for reducing resource wastage. However, the genuine experiences of clients cannot be readily understood only by using the collected server-side information. In this paper, a cloud resource management framework with two novel turnaround time driven auto-scaling mechanisms is proposed for ensuring the stability of service performance. In the first mechanism, turnaround time monitors are deployed in the client-side instead of the more traditional server-side, and the information collected outside the server is used for driving a dynamic auto-scaling operation. In the second mechanism, a schedule-based auto scaling preconfiguration maker is designed to test and identify the amount of resources required in the cloud. The reported experimental results demonstrate that using our original framework for cloud resource management, stable service quality can be ensured and, moreover, a certain amount of quality variation can be handled in order to allow the stability of the service performance to be increased

    An efficient component-based framework for intelligent home-care system design with video and physiological monitoring machineries

    Get PDF
    Abstract-This study proposes a customized and reusable component-based design framework based on the UML modeling process for intelligent home healthcare systems. All the proposed functional components are reusable, replaceable, and extensible for the system developers to implement customized home healthcare systems for different demands of patients and caregivers on healthcare monitoring aspects. The prototype design of the intelligent healthcare system based on these proposed components can provide the following features: 1). the system can monitor and record the videos of rehabilitation situations and actions of the patient by multiple CCD cameras, and the monitoring videos at different times can be accordingly stored in the archive. 2). the system can record the patient's physiological data records and the corresponding treatment plan, and these records can be stored in a XML archiving database for caregivers' review. 3). during the times for the patient to take medicine or other healing activities listed on the given treatment plan, the system can automatically alarm the patient and record the patient's treatment situations. 4). The patient's caregivers and family members can ubiquitously monitor the videos and physiological records of the patient's rehabilitation situations via the handheld mobile devices via the internet or wireless communication networks. 5). The caregivers and patients can setup the alarm machinery for the patients' physiological warning states, and once the patients' physiological states suddenly deteriorate, the module will immediately alarm the caregivers by sending notification messages to their remote mobile devices or web browsers

    CUDT: A CUDA Based Decision Tree Algorithm

    Get PDF

    Toona Sinensis Extracts Induced Cell Cycle Arrest and Apoptosis in the Human Lung Large Cell Carcinoma

    Get PDF
    Toona sinensis extracts have been shown to exhibit anti-cancer effects in human ovarian cancer cell lines, human promyelocytic leukemia cells and human lung adenocarcinoma. Its safety has also been confirmed in animal studies. However, its anti-cancer properties in human lung large cell carcinoma have not been studied. Here, we used a powder obtained by freeze-drying the super-natant of centrifuged crude extract from Toona sinensis leaves (TSL-1) to treat the human lung carcinoma cell line H661. Cell viability was evaluated by the 3-(4-,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Flow cytometry analysis revealed that TSL-1 blocked H661 cell cycle progression. Western blot analysis showed decreased expression of cell cycle proteins that promote cell cycle progression, including cyclin-dependent kinase 4 and cyclin D1, and increased the expression of proteins that inhibit cell cycle progression, including p27. Furthermore, flow cytometry analysis showed that TSL-1 induced H661 cell apoptosis. Western blot analysis showed that TSL-1 reduced the expression of the anti-apoptotic protein B-cell lymphoma 2, and degraded the DNA repair protein, poly(ADP-ribose) polymerase. TSL-1 shows potential as a novel therapeutic agent or for use as an adjuvant for treating human lung large cell carcinoma

    The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation.

    Get PDF
    Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation

    A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    Get PDF
    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system

    Vision-Based Finger Detection, Tracking, and Event Identification Techniques for Multi-Touch Sensing and Display Systems

    Get PDF
    This study presents efficient vision-based finger detection, tracking, and event identification techniques and a low-cost hardware framework for multi-touch sensing and display applications. The proposed approach uses a fast bright-blob segmentation process based on automatic multilevel histogram thresholding to extract the pixels of touch blobs obtained from scattered infrared lights captured by a video camera. The advantage of this automatic multilevel thresholding approach is its robustness and adaptability when dealing with various ambient lighting conditions and spurious infrared noises. To extract the connected components of these touch blobs, a connected-component analysis procedure is applied to the bright pixels acquired by the previous stage. After extracting the touch blobs from each of the captured image frames, a blob tracking and event recognition process analyzes the spatial and temporal information of these touch blobs from consecutive frames to determine the possible touch events and actions performed by users. This process also refines the detection results and corrects for errors and occlusions caused by noise and errors during the blob extraction process. The proposed blob tracking and touch event recognition process includes two phases. First, the phase of blob tracking associates the motion correspondence of blobs in succeeding frames by analyzing their spatial and temporal features. The touch event recognition process can identify meaningful touch events based on the motion information of touch blobs, such as finger moving, rotating, pressing, hovering, and clicking actions. Experimental results demonstrate that the proposed vision-based finger detection, tracking, and event identification system is feasible and effective for multi-touch sensing applications in various operational environments and conditions

    Establishing a nationwide emergency department-based syndromic surveillance system for better public health responses in Taiwan

    Get PDF
    Background. With international concern over emerging infectious diseases (EID) and bioterrorist attacks, public health is being required to have early outbreak detection systems. A disease surveillance team was organized to establish a hospital emergency department-based syndromic surveillance system (ED-SSS) capable of automatically transmitting patient data electronically from the hospitals responsible for emergency care throughout the country to the Centers for Disease Control in Taiwan (Taiwan-CDC) starting March, 2004. This report describes the challenges and steps involved in developing ED-SSS and the timely information it provides to improve in public health decision-making. Methods. Between June 2003 and March 2004, after comparing various surveillance systems used around the world and consulting with ED physicians, pediatricians and internal medicine physicians involved in infectious disease control, the Syndromic Surveillance Research Team in Taiwan worked with the Real-time Outbreak and Disease Surveillance (RODS) Laboratory at the University of Pittsburgh to create Taiwan's ED-SSS. The system was evaluated by analyzing daily electronic ED data received in real-time from the 189 hospitals participating in this system between April 1, 2004 and March 31, 2005. Results. Taiwan's ED-SSS identified winter and summer spikes in two syndrome groups: influenza-like illnesses and respiratory syndrome illnesses, while total numbers of ED visits were significantly higher on weekends, national holidays and the days of Chinese lunar new year than weekdays (p < 0.001). It also identified increases in the upper, lower, and total gastrointestinal (GI) syndrome groups starting in November 2004 and two clear spikes in enterovirus-like infections coinciding with the two school semesters. Using ED-SSS for surveillance of influenza-like illnesses and enteroviruses-related infections has improved Taiwan's pandemic flu preparedness and disease control capabilities. Conclusion. Taiwan's ED-SSS represents the first nationwide real-time syndromic surveillance system ever established in Asia. The experiences reported herein can encourage other countries to develop their own surveillance systems. The system can be adapted to other cultural and language environments for better global surveillance of infectious diseases and international collaboration. © 2008 Wu et al; licensee BioMed Central Ltd
    corecore